The Reliability of Having Speed Distribution and Automated Networks

Several utilities are geared in the researching for improved and better ways for the optimization and distribution of the feeder automation through the exploration of communication services via cellular devices. 

With this in mind, the distribution feeder automation systems were able to provide as many different classifications of solutions. The main reliability improved functions that were given by the said systems explicitly includes fault locate, isolate and service restoration, and automatic transfer functionality. However, these functions can be greatly improved through the reliability of some indicators about the distribution feeders. Thus this system can be greatly centralized, decentralized, or they can have combination of both. 

The centralized systems, in its traditional way, became the primary choice of solution in the automation of the distributed feeder networks. But the said systems have the tendency to react very slowly because they have to wait for the systems that can give protection from the disconnected faults that might exist in the network. The protection is needed by the personnel before they can take action on locating the faulted feeder segment and thus lead to the reconfiguration of the feeder, and supply of alternate power in some unaffected areas. 

Some of the decentralized systems, by contrast can provide the utmost capability to have the protection and automation have synchronized functionality that exists in some of the field devices that can give faster fault isolation and system configured actions. Thus, the good combination of the decentralized distribution automation (DA) systems together with the cellular communications can provide good possibilities for the increased reliability of some distributed networks. 

In the same way, some of the low-powered unlicensed radio devices and also the recently launched direct fiber-optic cable connections became the most common methods used in data communications of some DA applications. With this in mind, the electrical utilities that uses the cellular communications is not entirely new. As the matter of fact, the usual IT service that were being used to communicated some of the field device information data back to the utility are now being used in some various systems. Such as the advanced metering infrastructure (AMI). 

The utility of the cellular communication for the transmission of data that are being used in time-critical applications such as transfer trip (DTT), fault location isolation and service restoration (FLSIR) and Automatic Transfer System (ATS) can now be used by having the reliable communication happening between linking field device controllers be secured. 

In order to make this happen, the operational technology (OT) service type to give support to the unique requirements is critically crucial. Some of the OT systems are now deterministic in nature and should be able to give the actions based on information received. Such system should require security, dependable latency, and some reliability in line with what was recently established substation protection Standards.